🤔Что делать, если в небольшом размеченном наборе сильно несбалансированные классы, но среди неразмеченных данных, возможно, есть представители миноритарного класса
Когда классы сильно несбалансированы, модель может вообще не научиться распознавать редкий класс — особенно если в размеченных данных он почти не представлен. Это особенно критично, если модель начинает обучение уже с перекосом в сторону большинства.
🛠Как с этим справиться
1. Усиливаем вклад миноритарного класса в функцию потерь — Используем взвешивание классов или focal loss, который автоматически усиливает вклад трудных примеров.
2. Применяем регуляризацию на неразмеченных данных — Например, consistency regularization, при которой модель должна давать стабильные предсказания при слабых искажениях входа.
3. Активный отбор редких примеров среди неразмеченного пула — Можно применять кластеризацию и отбирать для разметки точки из «редких» кластеров — это метод active cluster labeling.
4. Анализируем предсказания модели на неразмеченных данных — Если модель слабо уверена в каком-то сегменте — возможно, это и есть миноритарный класс. Такие точки можно приоритизировать для ручной разметки.
🤔Что делать, если в небольшом размеченном наборе сильно несбалансированные классы, но среди неразмеченных данных, возможно, есть представители миноритарного класса
Когда классы сильно несбалансированы, модель может вообще не научиться распознавать редкий класс — особенно если в размеченных данных он почти не представлен. Это особенно критично, если модель начинает обучение уже с перекосом в сторону большинства.
🛠Как с этим справиться
1. Усиливаем вклад миноритарного класса в функцию потерь — Используем взвешивание классов или focal loss, который автоматически усиливает вклад трудных примеров.
2. Применяем регуляризацию на неразмеченных данных — Например, consistency regularization, при которой модель должна давать стабильные предсказания при слабых искажениях входа.
3. Активный отбор редких примеров среди неразмеченного пула — Можно применять кластеризацию и отбирать для разметки точки из «редких» кластеров — это метод active cluster labeling.
4. Анализируем предсказания модели на неразмеченных данных — Если модель слабо уверена в каком-то сегменте — возможно, это и есть миноритарный класс. Такие точки можно приоритизировать для ручной разметки.
“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.
A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.
Библиотека собеса по Data Science | вопросы с собеседований from kr